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LETTER TO THE EDITOR 

Fractional integral and differential equations for a class of 
Levy-type probability densities 

The0 F Nonnenmacher 
Department of Mathematical Physics, University of Ulm, D-7900 Ulm, Federal Republic 
of Germany 

Received 26 April 1990 

Abstract. An application of the fractional calculus to a class of Levy distribution functions 
leads to the conclusion that the Levy index (fractal dimension) p is identical to the order 
of the fractional Liouville-Riemann integral operator. The corresponding fractional 
integral and differential equations will be presented and solutions of Levy-type, one-sided 
probability densities will be given and discussed. 

Stable distributions play a dominant part in the theory of random variables. Non- 
standard random walks, for instance, which do not have a fixed step size, but which 
are based on a variable step size x, are usually described by a one-sided probability 
distribution function of asymptotic type (large x-values) 

f ( x ) - x - ' - @  P > O  x > o  (1) 

and are called LCvy flights since (1) represents a Levy distribution [ 11, and the trace 
of the sites visited by the walker forms a set of fractal dimension p [ 2 ] .  Here, we will 
show that for a certain class of one-sided probability densities f ( x ) ,  defined on R , ,  
the LCvy-index p can be related to the order of a fractional integral operator. For this 
reason we apply the fractional calculus [3] based on the Liouville-Riemann definition 
for the fractional integral operator given by 

In  general, q is a non-integer number. If  q = 1 , 2 , 3 . .  . then ( 2 )  is just the standard 
Riemann integral. The fractional di'erential operator for v > 0 is given by the 
definition 

where for v - n < O  is defined in ( 2 ) ,  indicating that for diffintegrable (i.e. 
differentiable and integrable) functions f ( x )  the operation 'fractional differentiation' 
can be decomposed into a fractional integration followed by an ordinary differentiation 
d"/dx". Here, n is the least positive integer greater than v. If 0 < v < 1, then we choose 
n = l , a n d i f  l < v < Z w e t a k e  n = 2 a n d s o o n .  
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Almost a decade ago it had already been suggested [4] that LCvy-type probability 
functions are not just solutions of standard-type differential equations but rather are 
to be represented by integral equations with an integral kernel K ( x  - y )  - (x  - y ) - *  of 
some fractional order a. More recently a Fox-function representation [ 51 has been 
given for a class of probability densities f ( x )  defined by the integral equation 

X"f(X)  = Iox (x-Y)-alf(Y) dY x > o  (4) 

where a > 0 is a non-integer number, and m is a positive integer (m = 1 ,2 ,3 ,  . . .). The 
motivation of our investigation is to show that the special class of normalised one-sided 
LCvy-type probability densities 

is a solution of the fractional integral equation 
X * ~ ~ ( X )  = a 4 0 ~ ; 4 f ( x )  

if we identify the Livy-index p as the fractional order q of the integral operator 
We note that f(x),  given in (9, tends to zero for x +  0 and has for large x-values the 
desired asymptotic behaviour (1). Figure 1 shows f (x)  for several values of p. It is 
obvious that the asymptotic power-law tail (1) satisfies the scaling property f( Ax) = 
A-@-'f(x) where A is the scaling factor, and p has been identified as a fractal (similarity) 
dimension [2]. Self-similar scaling processes based on LCvy dynamics play a dominant 
part in the study of random walks, of ion-channel gating kinetics [ 6 ]  and in the 
understanding of irregular structures and pattern formation in biophysical systems 
[7,81. 

For a = n and q = i, equation (6) leads to the Abel-type integral equation 

x f b )  = lox (x - ~ ) - " ~ f ( y )  dy (7)  
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Figure 1. Probability densityf(x) (equation ( 5 ) )  for some values of the Levy index p and 
for a = 1. 
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which has already been solved by Laplace transform techniques [ 9 ] .  The solution is 
f (x)  = x-3!2 exp(-.rr/x). To our knowledge a solution of (6) for arbitrary non-integer 
positive q-values has not been given up to now, and a relationship between q and p 
has not been pointed out. 

In order to show that ( 5 )  is a solution of (6) we insert f (x) ,  given in ( 5 ) ,  into the 
integral (6) and substitute y = ax/(xz+ a )  leading to 

a q  e - a / r  1 I,’ zq-l e-’ dz 
- r ( q )  x ~ + l - z q  r(p) ( x ~ + a ) * ’ - ~ ‘  

For q = p the remaining integral is just Euler’s definition of the I‘-function r ( p )  for 
p > 0. Thus, we have found for q = p :  

which is identical with the left-hand side of (6) if we take there q = p, which completes 
our proof. 

We note that the class of probability densities ( 5 )  is non-negative, and has the 
moments ( k = 0 , 1 , 2 ,  . . .)  

including normalisation ((x’) = 1). 
Making use of the definition (3) for fractional differentiation we find in a similar 

way, for n - U = p > 0, the following fractional diRerentia1 equation for the class f (x )  
of LCvy-type probability densities ( 5 ) :  

d” 
dx”  

oD:f(x) = o ~ : - P f ( x )  = a-@ - (x’”f(x)). ( 9 )  

Here, one has to take n = 1 (i.e. U =  1 - p )  if O <  p < 1 and n = 2 (i.e. v = 2 - p )  if 
1 < p < 2  etc. In physical applications of LCvy distributions one is mainly to be 
concerned with the cases 0 < p < 1 and 1 < p < 2. 

The fractional calculus is old but little studied. However, in the last decade, some 
investigators have discussed a few interesting problems concerning diffusion processes 
in media with fractal geometry [3,10], and have formulated fractional diffusion [ l l ]  
and fractional Boltzmann equations [ 121. 
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