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Fractional integral and differential equations for a class of
Lévy-type probability densities

Theo F Nonnenmacher

Department of Mathematical Physics, University of Ulm, D-7900 Uim, Federal Republic
of Germany

Received 26 April 1990

Abstract. An application of the fractional calculus to a class of Lévy distribution functions
leads to the conclusion that the Lévy index (fractal dimension) u is identical to the order
of the fractional Liouville-Riemann integral operator. The corresponding fractional
integral and differential equations will be presented and solutions of Lévy-type, one-sided
probability densities will be given and discussed.

Stable distributions play a dominant part in the theory of random variables. Non-
standard random walks, for instance, which do not have a fixed step size, but which
are based on a variable step size x, are usually described by a one-sided probability
distribution function of asymptotic type (large x-values)

flx)y~x"""* w>0 x>0 (1)

and are called Lévy flights since (1) represents a Lévy distribution [1], and the trace
of the sites visited by the walker forms a set of fractal dimension u [2]. Here, we will
show that for a certain class of one-sided probability densities f(x), defined on R,
the Lévy-index u can be related to the order of a fractional integral operator. For this
reason we apply the fractional calculus [3] based on the Liouville-Riemann definition
for the fractional integral operator ;D" given by

1 v
quf(x)::_‘[ (x=»)"'f(y)d >0. (2)
0 T ), v f(y)dy q
In general, g is a non-integer number. If g=1,2,3... then (2) is just the standard
Riemann integral. The fractional differential operator DY for v»>0 is given by the
definition

dn
WDif(x) =55 (D) v=n<0 3)

where (D;™" for v—n <0 is defined in (2), indicating that for diffintegrable (i.e.
differentiable and integrable) functions f(x) the operation ‘fractional differentiation’
can be decomposed into a fractional integration followed by an ordinary differentiation
d"/dx". Here, n is the least positive integer greater than v. If 0 < » <1, then we choose
n=1, and if 1 <v <2 we take n =2 and so on.
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Almost a decade ago it had already been suggested [4] that Lévy-type probability
functions are not just solutions of standard-type differential equations but rather are
to be represented by integral equations with an integral kernel K(x—y)~(x—y)™* of
some fractional order a. More recently a Fox-function representation [5] has been
given for a class of probability densities f(x) defined by the integral equation

X

x'"f(X)—“—J (x=y)"°f(y)dy x>0 (4)

[}

where a > 0 is a non-integer number, and m is a positive integer (m=1,2,3,...). The
motivation of our investigation is to show that the special class of normalised one-sided
Lévy-type probability densities

aﬂ-

f(x)= x* 'exp(—a/x) a>0 x>0 (5)
(w)
is a solution of the fractional integral equation
x*f(x) = a* D f(x) (6)

if we identify the Lévy-index u as the fractional order g of the integral operator D 7.
We note that f(x), given in (5), tends to zero for x> 0 and has for large x-values the
desired asymptotic behaviour (1). Figure 1 shows f(x) for several values of wu. It is
obvious that the asymptotic power-law tail (1) satisfies the scaling property f(Ax) =
A7*7'f(x) where A is the scaling factor, and u has been identified as a fractal (similarity)
dimension [2]. Self-similar scaling processes based on Lévy dynamics play a dominant
part in the study of random walks, of ion-channel gating kinetics [6] and in the
understanding of irregular structures and pattern formation in biophysical systems
(7, 8].
For a =7 and g =3, equation (6) leads to the Abel-type integral equation

Xf(x)=J’ (x=»)""?f(y) dy (7)
(4]
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Figure 1. Probability density f(x) (equation (5)) for some values of the Lévy index u and
for a=1.
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which has already been solved by Laplace transform techniques [9]. The solution is
f(x)=x"%?exp(—m/x). To our knowledge a solution of (6) for arbitrary non-integer
positive g-values has not been given up to now, and a relationship between g and u
has not been pointed out.

In order to show that (5) is a solution of (6) we insert f(x), given in (5), into the
integral (6) and substitute y = ax/(xz+ a) leading to

a ©

[(q) T(w)
_a* P J"‘ 297 e dz
CT(g) x*TUH () Jo (xzta)

a% D f(x) =

J (x=p)i~ly # te™" dy
0

For ¢ = u the remaining integral is just Euler’s definition of the I'-function I'(u) for
u>0. Thus, we have found for g = u:

@D f(x) = o S o)
o+ x F(,U-) x'*#—
which is identical with the left-hand side of (6) if we take there g = w, which completes

our proof.
We note that the class of probability densities (5) is non-negative, and has the
moments (k=0,1,2,...)

<xk>=J x'f(x) dx=a*T(p —k)/T(w) (8)
0
including normalisation ((x%=1).

Making use of the definition (3) for fractional differentiation we find in a similar
way, for n— v = u >0, the following fractional differential equation for the class f(x)
of Lévy-type probability densities (5):

d"

oD f(x) =D f(x)=a™ dx"
X

(x?#f(x)). 9)

Here, one has to take n=1 (ie. v=1-u) if 0<pu <1 and n=2 (ie. v=2-pu) if
1<u <2 etc. In physical applications of Lévy distributions one is mainly to be
concerned with the cases 0<u <1and 1<u<2.

The fractional calculus is old but little studied. However, in the last decade, some
investigators have discussed a few interesting problems concerning diffusion processes
in media with fractal geometry {3, 10], and have formulated fractional diffusion [11]
and fractional Boltzmann equations [12].
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